- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000001001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ke, Yutian (2)
-
Soldano, Vincent (2)
-
West, A Joshua (2)
-
Anadu, Joshua (1)
-
Brown, Nathan D (1)
-
Douglas, Madison (1)
-
Dunne, Kieran (1)
-
Fischer, Woodward (1)
-
Fischer, Woodward W (1)
-
Geyman, Emily (1)
-
Geyman, Emily C (1)
-
Lamb, Michael (1)
-
Lamb, Michael P (1)
-
Magyar, John (1)
-
Magyar, John S (1)
-
Nghiem, Justin (1)
-
Reahl, Jocelyn (1)
-
Reahl, Jocelyn N (1)
-
Seelen, Emily (1)
-
Smith, M Isabel (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nearly 10% of Earth’s continents are covered by river floodplains. These landscapes serve as weathering reactors whereby particles eroded from mountains undergo chemical and physical alteration before being exported to oceans. The time a particle spends in floodplain reservoirs regulates the style and extent of continental chemical weathering and the fate of terrestrial organic carbon. Despite its importance for the global carbon cycle, we still lack a quantitative understanding of floodplain storage timescales. Using a combination of geomorphic mapping, radiocarbon and luminescence dating, and numerical simulations of meander dynamics, we identify well-conserved scaling laws that describe floodplain storage times. Our results reveal that, to first order, floodplain storage durations are set by the ratio of river width to migration rate. The fact that most rivers erode about 1% of their width per year leads to a typical floodplain storage duration of ~5 thousand years.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Geyman, Emily; Ke, Yutian; Douglas, Madison; Anadu, Joshua; Magyar, John; Dunne, Kieran; Nghiem, Justin; Reahl, Jocelyn; Seelen, Emily; Smith, M Isabel; et al (, NSF Arctic Data Center)This document describes geomorphic relative age mapping and radiocarbon (14C) measurements used to construct floodplain age models for three locations within the Yukon River Watershed: Huslia, Alaska (65.700 N, 156.387 W), Alakanuk, Alaska (62.685 N, 164.644 W), and Beaver, Alaska (66.362 N, 147.398 W). We describe the field sampling protocols, geomorphic mapping of cross-cutting relationships (aided by digital elevation models (DEMs) and high-resolution satellite imagery), 14C and optically stimulated luminescence (OSL) lab analyses, Markov Chain Monte Carlo (MCMC) interpolation through the geomorphic–radiogenic age constraints, and the resulting floodplain terrain age models.more » « less
An official website of the United States government
